Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(45): 10113-10118, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37921693

RESUMO

The effects of CaCl2 and MgCl2 on the cloud point temperature of two different elastin-like polypeptides (ELPs) were studied using a combination of cloud point measurements, molecular dynamics simulations, and infrared spectroscopy. Changes in the cloud point for the ELPs in aqueous divalent metal cation solutions were primarily governed by two competing interactions: the cation-amide oxygen electrostatic interaction and the hydration of the cation. In particular, Ca2+ cations can more readily shed their hydration shells and directly contact two amide oxygens by the formation of ion bridges. By contrast, Mg2+ cations were more strongly hydrated and preferred to partition toward the amide oxygens along with their hydration shells. In fact, although hydrophilic ELP V5A2G3 was salted-out at low concentrations of MgCl2, it was salted-in at higher salt concentrations. By contrast, CaCl2 salted the ELP sharply out of solution at higher salt concentrations because of the bridging effect.


Assuntos
Elastina , Peptídeos , Elastina/química , Cloreto de Cálcio , Peptídeos/química , Amidas/química , Cátions/química , Cátions Bivalentes
2.
Langmuir ; 39(18): 6447-6454, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37125843

RESUMO

When a nanoparticle (NP) is introduced into a biological environment, its identity and interactions are immediately attributed to the dense layer of proteins that quickly covers the particle. The formation of this layer, dubbed the protein corona, is in general a combination of proteins interacting with the surface of the NP and a contest between other proteins for binding sites either at the surface of the NP or upon the dense layer. Despite the importance for surface engineering and drug development, the molecular mechanisms and structure behind interfacial biomolecule action have largely remained elusive. We use ultrafast sum frequency scattering (SFS) spectroscopy to determine the structure and the mode of action by which these biomolecules interact with and manipulate interfaces. The majority of work in the field of sum frequency generation has been done on flat model interfaces. This limits some important membrane properties such as membrane fluidity and dimensionality─important factors in biomolecule-membrane interactions. To move toward three-dimensional (3D) nanoscopic interfaces, we utilize SFS spectroscopy to interrogate the surface of 3D lipid monolayers, which can be used as a model lipid-based nanocarrier system. In this study, we have utilized SFS spectroscopy to follow the action of lysozyme. SFS spectra in the amide I region suggest that there is lysozyme at the interface and that the lysozyme induces an increased lipid monolayer order. The binding of lysozyme with the NP is demonstrated by an increase in acyl chain order determined by the ratio of the CH3 symmetric and CH2 symmetric peak amplitudes. Furthermore, the lipid headgroup orientation s-PO2- change strongly supports lysozyme insertion into the lipid layer causing lipid disruption and reorientation. Altogether, with SFS, we have made a huge stride toward understanding the binding and structure change of proteins within the protein corona.


Assuntos
Fosfolipídeos , Coroa de Proteína , Fosfolipídeos/química , Muramidase/química , Análise Espectral/métodos , Proteínas/química
3.
Nat Chem ; 14(1): 40-45, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725491

RESUMO

Weakly hydrated anions help to solubilize hydrophobic macromolecules in aqueous solutions, but small molecules comprising the same chemical constituents precipitate out when exposed to these ions. Here, this apparent contradiction is resolved by systematically investigating the interactions of NaSCN with polyethylene oxide oligomers and polymers of varying molecular weight. A combination of spectroscopic and computational results reveals that SCN- accumulates near the surface of polymers, but is excluded from monomers. This occurs because SCN- preferentially binds to the centre of macromolecular chains, where the local water hydrogen-bonding network is disrupted. These findings suggest a link between ion-specific effects and theories addressing how hydrophobic hydration is modulated by the size and shape of a hydrophobic entity.

4.
Langmuir ; 37(49): 14443-14453, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34856801

RESUMO

The lyotropic liquid crystalline (LLC) mesophase forms upon evaporation of water from aqueous solutions of LiX salts (X is Cl-, Br-, NO3-, or SCN-) and a surfactant [C12H25(OCH2CH2)10OH, abbreviated as C12E10]. The LiX/C12E10/H2O aqueous solutions have been monitored (during evaporation of their excess water to obtain stable LLC mesophases) by gravimetric, spectroscopic, and conductivity measurements to elucidate the role of water in these mesophases. The water/salt molar ratio in stable mesophases changes from 1.5 to 8.0, depending on the counteranion of the salt and the ambient humidity of the laboratory. The LiX/C12E10/H2O LLC mesophases lose water at lower humidity levels and absorb water at higher humidity levels. The LiCl-containing mesophase holds as few as four structural water molecules per LiCl, whereas the LiNO3 mesophase holds 1.5 waters per salt (least among those assessed). This ratio strongly depends on the atmospheric humidity level; the water/LiX mole ratio increases by 0.08 ± 0.01 H2O in the LLC mesophases per percent humidity unit. Surprisingly, the LLC mesophases are stable (no salt leaching) in broad humidity (10-85%) and salt/surfactant mole ratio (2-10 LiX/C12E10) ranges. Attenuated total reflectance Fourier transform infrared spectroscopic data show that the water molecules in the mesophase interact with salt species more strongly in the LiCl mesophase and more weakly in the case of the nitrate ion, which is evident by the shift of the O-H stretching band of water. The O-H stretching peak position in the mesophases decreases in the order νLiCl > νLiBr > νLiSCN > νLiNO3 and accords well with the H2O/LiX mole ratio. The conductivity of the LLC mesophase also responds to the amount of water as well as the nature of the counteranion (X-). The conductivity decreases in the order σLiCl > σLiBr > σLiNO3 > σLiSCN at low salt mole ratios and in the order σLiBr > σLiCl > σLiNO3 > σLiSCN at higher ratios due to structural changes in the mesophase.

5.
J Phys Chem B ; 125(45): 12457-12465, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34730965

RESUMO

Morphological and gel-to-liquid phase transitions of lipid membranes are generally considered to primarily depend on the structural motifs in the hydrophobic core of the bilayer. Structural changes in the aqueous headgroup phase are typically not considered, primarily because they are difficult to quantify. Here, we investigate structural changes of the hydration shells around large unilamellar vesicles (LUVs) in aqueous solution, using differential scanning calorimetry (DSC), and temperature-dependent ζ-potential and high-throughput angle-resolved second harmonic scattering measurements (AR-SHS). Varying the lipid composition from 1,2-dimyristoyl-sn-glycero-3-phosphocholine(DMPC) to 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA), to 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine (DMPS), we observe surprisingly distinct behavior for the different systems that depend on the chemical composition of the hydrated headgroups. These differences involve changes in hydration following temperature-induced counterion redistribution, or changes in hydration following headgroup reorientation and Stern layer compression.


Assuntos
Bicamadas Lipídicas , Água , Varredura Diferencial de Calorimetria , Dimiristoilfosfatidilcolina , Lipossomas Unilamelares
6.
J Phys Chem B ; 125(30): 8484-8493, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34313130

RESUMO

Vibrational Stark shifts were explored in aqueous solutions of organic molecules with carbonyl- and nitrile-containing constituents. In many cases, the vibrational resonances from these moieties shifted toward lower frequency as salt was introduced into solution. This is in contrast to the blue-shift that would be expected based upon Onsager's reaction field theory. Salts containing well-hydrated cations like Mg2+ or Li+ led to the most pronounced Stark shift for the carbonyl group, while poorly hydrated cations like Cs+ had the greatest impact on nitriles. Moreover, salts containing I- gave rise to larger Stark shifts than those containing Cl-. Molecular dynamics simulations indicated that cations and anions both accumulate around the probe in an ion- and probe-dependent manner. An electric field was generated by the ion pair, which pointed from the cation to the anion through the vibrational chromophore. This resulted from solvent-shared binding of the ions to the probes, consistent with their positions in the Hofmeister series. The "anti-Onsager" Stark shifts occur in both vibrational spectroscopy and fluorescence measurements.


Assuntos
Eletrólitos , Água , Ânions , Cátions , Simulação de Dinâmica Molecular
7.
J Am Chem Soc ; 142(45): 19094-19100, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33124825

RESUMO

Ion identity and concentration influence the solubility of macromolecules. To date, substantial effort has been focused on obtaining a molecular level understanding of specific effects for anions. By contrast, the role of cations has received significantly less attention and the underlying mechanisms by which cations interact with macromolecules remain more elusive. To address this issue, the solubility of poly(N-isopropylacrylamide), a thermoresponsive polymer with an amide moiety on its side chain, was studied in aqueous solutions with a series of nine different cation chloride salts as a function of salt concentration. Phase transition temperature measurements were correlated to molecular dynamics simulations. The results showed that although all cations were on average depleted from the macromolecule/water interface, more strongly hydrated cations were able to locally accumulate around the amide oxygen. These weakly favorable interactions helped to partially offset the salting-out effect. Moreover, the cations approached the interface together with chloride counterions in solvent-shared ion pairs. Because ion pairing was concentration-dependent, the mitigation of the dominant salting-out effect became greater as the salt concentration was increased. Weakly hydrated cations showed less propensity for ion pairing and weaker affinity for the amide oxygen. As such, there was substantially less mitigation of the net salting-out effect for these ions, even at high salt concentrations.

8.
Chemphyschem ; 21(21): 2397-2401, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32955763

RESUMO

Angle-resolved X-ray photoelectron spectroscopy and contact-angle measurements guided by a signal attenuation model are utilized to extract molar composition and anion enrichment in the vacuum interface of a binary ionic liquid mixture, having a common quaternary ammonium cation and two different anions. By using the intensity ratio of the F1s peaks belonging to the two different anions recorded at the full electron take-off angle range, from 0° to 80°, we have determined that only a fractionally covered and anion enriched surface layer can predict the AR-XPS data, which is also consistent with surface tension measurements. Moreover, the more bulky and non-spherical anion enrichment is evident even at the conventional and the so assumed bulk sensitive take-off angle of 0°. This methodology provides a surface enrichment factor of the molecular ions and clearly serves as an experimental evidence for recently debated surface layering and/or island structure in ionic liquid systems.

9.
Proc Natl Acad Sci U S A ; 116(51): 25516-25523, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31792179

RESUMO

The interface between water and folded proteins is very complex. Proteins have "patchy" solvent-accessible areas composed of domains of varying hydrophobicity. The textbook understanding is that these domains contribute additively to interfacial properties (Cassie's equation, CE). An ever-growing number of modeling papers question the validity of CE at molecular length scales, but there is no conclusive experiment to support this and no proposed new theoretical framework. Here, we study the wetting of model compounds with patchy surfaces differing solely in patchiness but not in composition. Were CE to be correct, these materials would have had the same solid-liquid work of adhesion (WSL ) and time-averaged structure of interfacial water. We find considerable differences in WSL , and sum-frequency generation measurements of the interfacial water structure show distinctively different spectral features. Molecular-dynamics simulations of water on patchy surfaces capture the observed behaviors and point toward significant nonadditivity in water density and average orientation. They show that a description of the molecular arrangement on the surface is needed to predict its wetting properties. We propose a predictive model that considers, for every molecule, the contributions of its first-nearest neighbors as a descriptor to determine the wetting properties of the surface. The model is validated by measurements of WSL in multiple solvents, where large differences are observed for solvents whose effective diameter is smaller than ∼6 Å. The experiments and theoretical model proposed here provide a starting point to develop a comprehensive understanding of complex biological interfaces as well as for the engineering of synthetic ones.

10.
Proc Natl Acad Sci U S A ; 116(32): 15784-15791, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31337677

RESUMO

Aqueous two-phase system (ATPS) formation is the macroscopic completion of liquid-liquid phase separation (LLPS), a process by which aqueous solutions demix into 2 distinct phases. We report the temperature-dependent kinetics of ATPS formation for solutions containing a monoclonal antibody and polyethylene glycol. Measurements are made by capturing dark-field images of protein-rich droplet suspensions as a function of time along a linear temperature gradient. The rate constants for ATPS formation fall into 3 kinetically distinct categories that are directly visualized along the temperature gradient. In the metastable region, just below the phase separation temperature, Tph , ATPS formation is slow and has a large negative apparent activation energy. By contrast, ATPS formation proceeds more rapidly in the spinodal region, below the metastable temperature, Tmeta , and a small positive apparent activation energy is observed. These region-specific apparent activation energies suggest that ATPS formation involves 2 steps with opposite temperature dependencies. Droplet growth is the first step, which accelerates with decreasing temperature as the solution becomes increasingly supersaturated. The second step, however, involves droplet coalescence and is proportional to temperature. It becomes the rate-limiting step in the spinodal region. At even colder temperatures, below a gelation temperature, Tgel , the proteins assemble into a kinetically trapped gel state that arrests ATPS formation. The kinetics of ATPS formation near Tgel is associated with a remarkably fragile solid-like gel structure, which can form below either the metastable or the spinodal region of the phase diagram.


Assuntos
Anticorpos Monoclonais/análise , Água/química , Coloides/química , Cinética , Espalhamento de Radiação , Soluções , Temperatura , Fatores de Tempo , Imagem com Lapso de Tempo
11.
J Am Chem Soc ; 141(31): 12168-12181, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31323177

RESUMO

Lipid membranes provide diverse and essential functions in our cells relating to transport, energy harvesting and signaling. This variety of functions is controlled by the molecular architecture, such as the presence of hydrating water, specific chemical compounds and microscopic structures, such as the local membrane curvature, as well as macroscopic properties, such as the fluidity of the membrane. To understand the chemistry of membranes, ideally one needs access to multiple length scales simultaneously, using probes that are noninvasive, label-free and membrane-interface specific. This dream is generally pursued by following either a top-down approach, introducing labels to real cell membranes or by following a bottom-up approach with well-controlled but simplified membrane monolayer or supported membrane models. This Perspective offers an alternative path that ultimately envisions bringing together both approaches. By using intermediate nano-, micro- and macroscale free-floating membrane systems in combination with novel nonlinear optical methods, one can advance the understanding of realistic membranes on a more fundamental level. Here, we describe recent advances in understanding membrane molecular structure, hydration, electrostatics and the effect of variable length scale, curvature and confinement for 3D nano- and microscale membrane systems such as lipid droplets and liposomes. We also describe an approach to image membrane hydration and membrane potentials in real time and space together with an application to neuroscience. In doing so, we consider the emerging role of interfacial transient structural heterogeneities that are apparent in both model membranes as well as in whole cells.


Assuntos
Membrana Celular/química , Água/química , Bicamadas Lipídicas/química , Gotículas Lipídicas/química , Propriedades de Superfície
12.
J Phys Chem B ; 123(10): 2414-2423, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30763096

RESUMO

Many biological systems are composed of nanoscale structures having hydrophobic and hydrophilic groups adjacent to one another and in contact with aqueous electrolyte solution. The interaction of ions with such structures is of fundamental importance. Although many studies have focused on characterizing planar extended (often air/water) interfaces, little is known about ion speciation at complex nanoscale biological systems. To start understanding the complex mechanisms involved, we use a hexadecane nanodroplet system, stabilized with a dilute monolayer of positively charged dodecyltrimethylammonium cations (DTA+) groups in contact with an electrolyte solution (NaSCN). Using vibrational sum frequency scattering, second harmonic scattering, ζ-potential measurements, and quantum density functional theory, we find DTA+-SCN- ion pairing at concentrations as low as 5 mM. A variety of ion species emerge at different ionic strengths, with differently oriented SCN- groups adsorbed on hydrophilic or hydrophobic parts of the surface. This diverse and heterogeneous chemical environment is surprisingly different from the behavior at extended liquid planar interfaces, where ion pairing is typically detected at molar concentrations and nanoscale system stability is no requirement.


Assuntos
Nanoestruturas/química , Compostos de Amônio Quaternário/química , Tiocianatos/química , Água/química , Eletrólitos/química , Interações Hidrofóbicas e Hidrofílicas , Íons , Simulação de Dinâmica Molecular , Propriedades de Superfície , Vibração
13.
J Phys Chem B ; 123(5): 1044-1049, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30625272

RESUMO

Amyloid formation of the protein α-synuclein promotes neurodegeneration in Parkinson's disease. The normal function of α-synuclein includes synaptic vesicle transport and fusion, and the protein binds strongly to negatively charged vesicles in vitro. Here, we demonstrate that nonresonant angle-resolved second-harmonic scattering detects α-synuclein binding to liposomes through changes in water orientational correlations and can thus be used as a high-accuracy and high-throughput label-free probe of protein-liposome interactions. The obtained results support a binding model in which the N-terminus of α-synuclein adopts an α-helical conformation that lies flat on the vesicle surface while the negatively charged C-terminus remains in solution.


Assuntos
Lipossomos/metabolismo , Proteínas de Membrana/metabolismo , Água/química , alfa-Sinucleína/metabolismo , Escherichia coli/genética , Lipossomos/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Fosfatidilgliceróis/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , alfa-Sinucleína/química , alfa-Sinucleína/genética
14.
J Chem Phys ; 149(23): 234704, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30579299

RESUMO

Interfacial phase transitions are of fundamental importance for climate, industry, and biological processes. In this work, we observe a hydration mediated surface transition in supercooled oil nanodroplets in aqueous solutions using second harmonic and sum frequency scattering techniques. Hexadecane nanodroplets dispersed in water freeze at a temperature of ∼15 °C below the melting point of the bulk alkane liquid. Addition of a trimethylammonium bromide (CXTA+) type surfactant with chain length equal to or longer than that of the alkane causes the bulk oil droplet freezing transition to be preceded by a structural interfacial transition that involves water, oil, and the surfactant. Upon cooling, the water loses some of its orientational order with respect to the surface normal, presumably by reorienting more parallel to the oil interface. This is followed by the surface oil and surfactant alkyl chains losing some of their flexibility, and this chain stretching induces alkyl chain ordering in the bulk of the alkane phase, which is then followed by the bulk transition occurring at a 3 °C lower temperature. This behavior is reminiscent of surface freezing observed in planar tertiary alkane/surfactant/water systems but differs distinctively in that it appears to be induced by the interfacial water and requires only a very small amount of surfactant.

15.
J Phys Chem Lett ; 9(23): 6739-6743, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30398354

RESUMO

Pure aqueous electrolyte solutions display a minimum in surface tension at concentrations of 2 ± 1 mM. This effect has been a source of controversy since it was first reported by Jones and Ray in the 1930s. The Jones-Ray effect has frequently been dismissed as an artifact linked to the presence of surface-active impurities. Herein we systematically consider the effect of surface-active impurities by purposely adding nanomolar concentrations of surfactants to dilute electrolyte solutions. Trace amounts of surfactant are indeed found to decrease the surface tension and influence the surface chemistry. However, surfactants can be removed by repeated aspiration and stirring cycles, which eventually deplete the surfactant from solution, creating a pristine surface. Upon following this cleaning procedure, a reduction in the surface tension by millimolar concentrations of salt is still observed. Consequently, we demonstrate that the Jones-Ray effect is not caused by surface-active impurities.

16.
Langmuir ; 34(30): 8983-8993, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29983071

RESUMO

Understanding of the interactions between proteins and natural and artificially prepared lipid membrane surfaces and embedded nonpolar cores is important in studies of physiological processes and their pathologies and is applicable to nanotechnologies. In particular, rapidly growing interest in cellular droplets defines the need for simplified biomimetic lipid model systems to overcome in vivo complexity and variability. We present a protocol for the preparation of kinetically stable nanoemulsions with nanodroplets composed of sphingomyelin (SM) and cholesterol (Chol), as amphiphilic surfactants, and trioleoylglycerol (TOG), at various molar ratios. To prepare stable SM/Chol-coated monodisperse lipid nanodroplets, we modified a reverse phase evaporation method and combined it with ultrasonication. Lipid composition, ζ-potential, gyration and hydrodynamic radius, shape, and temporal stability of the lipid nanodroplets were characterized and compared to extruded SM/Chol large unilamellar vesicles. Lipid nanodroplets and large unilamellar vesicles with theoretical SM/Chol/TOG molar ratios of 1/1/4.7 and 4/1/11.7 were further investigated for the orientational order of their interfacial water molecules using a second harmonic scattering technique, and for interactions with the SM-binding and Chol-binding pore-forming toxins equinatoxin II and perfringolysin O, respectively. The surface characteristics (ζ-potential, orientational order of interfacial water molecules) and binding of these proteins to the nanodroplet SM/Chol monolayers were similar to those for the SM/Chol bilayers of the large unilamellar vesicles and SM/Chol Langmuir monolayers, in terms of their surface structures. We propose that such SM/Chol/TOG nanoparticles with the required lipid compositions can serve as experimental models for monolayer membrane to provide a system that imitates the natural lipid droplets.


Assuntos
Colesterol/química , Lipídeos/química , Nanoestruturas/química , Proteínas/metabolismo , Esfingomielinas/química , Ligação Proteica , Proteínas/química , Trioleína/química , Lipossomas Unilamelares/química , Água/química
17.
J Chem Phys ; 148(22): 222835, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29907025

RESUMO

The temperature dependence of the femtosecond elastic second harmonic scattering (fs-ESHS) response of bulk light and heavy water and their electrolyte solutions is presented. We observe clear temperature dependent changes in the hydrogen (H)-bond network of water that show a decrease in the orientational order of water with increasing temperature. Although D2O has a more structured H-bond network (giving rise to more fs-ESHS intensity), the relative temperature dependence is larger in H2O. The changes are interpreted in terms of the symmetry of H-bonds and are indicators of nuclear quantum effects. Increasing the temperature in electrolyte solutions decreases the influence of the total electrostatic field from ions on the water-water correlations, as expected from Debye-Hückel theory, since the Debye length becomes longer. The effects are, however, 1.9 times (6.3 times) larger than those predicted for H2O (D2O). Since fs-ESHS responses can be computed from known molecular coordinates, our observations provide a unique opportunity to refine quantum mechanical models of water.

18.
Langmuir ; 34(3): 1042-1050, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29019694

RESUMO

The molecular structure of zwitterionic and charged monolayers on small oil droplets in aqueous solutions is determined using a combined second harmonic and sum frequency study. From the interfacial vibrational signature of the acyl chains and phosphate headgroups as well as the response of the hydrating water, we find that zwitterionic and charged lipids with identical acyl chains form remarkably different monolayers. Zwitterionic phospholipids form a closely packed monolayer with highly ordered acyl tails. In contrast, the charged phospholipids form a monolayer with a low number density and disordered acyl tails. The charged headgroups are oriented perpendicular to the monolayer rather than parallel, as is the case for zwitterionic lipids. These significant differences between the two types of phospholipids indicate important roles of phospholipid headgroups in the determination of properties of cellular membranes and lipid droplets. The observed behavior of charged phospholipids is different from expectations based on studies performed on extended planar interfaces, at which condensed monolayers are readily formed. The difference can be explained by nanoscale related changes in charge condensation behavior that has its origin in a different balance of interfacial intermolecular interactions.

19.
ACS Nano ; 11(12): 12111-12120, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29224343

RESUMO

Mixtures of nano- and microscopic oil droplets in water have recently been rediscovered as miniature reaction vessels in microfluidic environments and are important constituents of many environmental systems, food, personal care, and medical products. The oil nanodroplet/water interface stabilized by surfactants determines the physicochemical properties of the droplets. Surfactants are thought to stabilize nanodroplets by forming densely packed monolayers that shield the oil phase from the water. This idea has been inferred from droplet stability measurements in combination with molecular structural data obtained from extended planar interfaces. Here, we present a molecular level investigation of the surface structure and stability of nanodroplets and show that the surface structure of nanodroplets is significantly different from that of extended planar interfaces. Charged surfactants form monolayers that are more than 1 order of magnitude more dilute than geometrically packed ones, and there is no experimental correlation between stability and surfactant surface density. Moreover, dilute negatively charged surfactant monolayers produce more stable nanodroplets than dilute positively charged and dense geometrically packed neutral surfactant monolayers. Droplet stability is found to depend on the relative cooperativity between charge-charge, charge-dipole, and hydrogen-bonding interactions. The difference between extended planar interfaces and nanoscale interfaces stems from a difference in the thermally averaged total charge-charge interactions in the two systems. Low dielectric oil droplets with a size smaller than the Debye length in oil permit repulsive interactions between like charges from opposing interfaces in small droplets. This behavior is generic and extends up to the micrometer length scale.

20.
Phys Chem Chem Phys ; 19(36): 24678-24688, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28858349

RESUMO

Specific ion effects in aqueous solutions are investigated at the molecular, nanoscopic and macroscopic levels. Femtosecond elastic second harmonic scattering (fs-ESHS) is used here to assess the chemical effects of ions on molecular and nanoscopic length scales of water, probing changes in the charge distribution around ions as well as structural orientational order of water molecules in extended hydration shells. We measured >0.05 M electrolyte solutions with a series of chloride salts (LiCl, NaCl, KCl, CsCl, RbCl, NH4Cl, MgCl2, CaCl2, and SrCl2). Ion specificity is observed in both the local electronic anisotropy and the nanoscopic orientational ordering of water. Both observables are influenced more by cations with larger valencies and smaller sizes and follow a direct Hofmeister trend. These ion-induced structural changes in the hydrogen-bond network of water are strongly correlated with the viscosity B-coefficient and the Gibbs free energy of hydration of ions. Such a connection between the nanoscopic and macroscopic changes provides a possibility to construct a molecular model for specific ion effects in aqueous solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...